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Scramble in behaviour and ecology

G. A. Parker
Population and Evolutionary Biology Research Group, School of Biological Sciences, Nicholson Building,

University of Liverpool, Liverpool L69 3GS, UK (gap@liv.ac.uk)

Nicholson’s distinction between `scramble’ and c̀ontest’ modes of competition has received widespread
attention in ecology and in behaviour, though the emphasis has been di¡erent between the two
disciplines. In ecology the focus has been on the e¡ects on population; in behavioural ecology the focus
has been on the consequences at the individual level. This paper reviews and develops a theory of
scramble competition at the individual level, deriving a general evolutionarily stable strategy (ESS) for
individual scramble expenditure in a patchy habitat in which individuals compete in local groups for
available resources, and examines two population consequences. The critical parameter determining the
relationship between individual scramble expenditure and the number of competitors in a patch is the
expected resource per capita. If resource input, R, to a patch is constant and independent of the number
of competitors, n, then as the number of competitors increases, the per-capita resources declines as R/n,
and the ESS scramble level declines (in proportion to (n71)/n2). However, if the resource input to a patch
is positively related to the number of competitors in the patch, scramble expenditure may increase with
the number of competitors. In the case where the per-capita resource input stays constant (i.e. R(n) ˆ Rn),
the scramble level increases with competitor number (in proportion to (n71)/n). There are plausible
ecological reasons why either of these extreme limits may be approached in nature, making it important
to ascertain the relationship between R and n before predicting individual scramble expenditure. For
example, resource input may be constant when groups of competitors are constrained to remain together
in given patches, and constant per-capita resources may be approached when ideal-free foraging rules
apply. However, in the latter case, scramble expenditure must be accounted for in determining the ideal-
free distribution. An analysis shows that this leads to `undermatching’, i.e. the ratio of numbers of
competitors for good/bad patches becomes progressively less than the ratio of input rates for good/bad
patches as the di¡erence between the good and bad patches increases. A second population consequence
of the scramble ESS relates to the fact that scrambles may dramatically a¡ect ¢tness. The per-capita gain
in energy can be reduced by a factor of up to 1/n as a result of scramble expenditure, potentially reducing
realized population size to as little as the square root of the maximum potential carrying capacity,
though reasons are given why such large reductions are unlikely.

Keywords: scramble competition; ideal-free distribution; evolutionarily stable strategies

1. INTRODUCTION

`It is necessary to distinguish between two kinds of
competition, as they produce di¡erent e¡ects upon the
patterns of population growth and maintenance. Scramble
is the kind of competition exhibited by a crowd of boys
striving to secure broadcast sweets . . . . Its characteristic
is that success is commonly incomplete, so that some and
at times all, of the requisite secured by the competing
animals takes no part in sustaining the population, being
dissipated by individuals which obtain insu¤cient for
survival. With contest, on the other hand, the individuals
may be said to compete for prizes (such as a host indivi-
dual, or an amount of favourable space an individual can
arrogate to itself ) which provides as much of the requisite
as an individual needs to enable it to reach maturity, or
provides fully for the development of one or more
o¡spring. Thus individuals are either fully successful, or
unsuccessful; and the whole amount of the requisite
obtained collectively by the animals is used e¡ectively
and without wastage in maintaining the population.’

A. J. Nicholson (1954, pp. 619^620)

Nicholson’s seminal concept of the two forms of competi-
tive interaction relates more to their ecological outcomes
than to the underlying behaviour involved. Gains to
competitors in contests are all or nothing (individuals are
either `winners’ or `losers’), whereas in scrambles, all indi-
viduals achieve some gains, if sometimes less than enough
to survive and/or reproduce. The main thrust in ecology
has been the analysis of the population implications of
this di¡erence. Contest and scramble are at either ends of
a continuum along which all actual competitive inter-
actions lieöin p̀ure’ contest there are a de¢ned number
of winners, each getting as much in a competitive situa-
tion as they would get in the absence of competition, and
the number of losers (who get nothing) is given by
[number competing]7[winners]; in p̀ure’ scramble all
competitors get a share of resource, and where this is `not
enough’ they die or fail to breed.

These concepts have been subject to di¡erent emphasis
in behavioural ecology, where the focus has been on how
animals compete behaviourally, and on the implications,
at the individual level, of how the resource is divided
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among competitors. For contests, the aim has been to
deduce what forms of behaviour (e.g. what conventional
rules for settlement) may be evolutionarily stable under
the game rule that resources are indivisible. For scram-
bles, the aim has been to deduce evolutionarily stable
levels of scramble and their behavioural implications
under the game rule that the resource can be shared
among the competitors.

Though they retain more or less the original implica-
tions in behaviour as in ecology, the emphasis has been on
understanding how the ecological rule (shareable or
unshareable resources) a¡ects the evolution of behaviour
rather than on understanding how its outcome a¡ects
populations. There has been much focus on contests in
behavioural ecology, starting in the mid-1970s (e.g.
Maynard Smith & Price 1973; Maynard Smith & Parker
1976; Maynard Smith 1982) and major advances were still
continuing a decade later (e.g. Enquist & Leimar 1983,
1987). This literature contributed considerably to the early
development of evolutionarily stable strategy (ESS) theory
(for a review, see Maynard Smith 1982). In the behavioural
ecology sense, in scrambles there are no clear winners or
losersöindividuals compete by increasing their e¡ort in
harvesting the resource. There have also been extensive
ESS analyses of scrambles, both generally (Parker 1985)
and in a wide variety of speci¢c contexts: territoriality
(Parker & Knowlton 1980); sexual advertisement
(Andersson 1982, 1994; Parker 1982); intrafamily games
(reviewed in Mock & Parker 1997); sex allocation (e.g.
Charnov 1983); sperm competition (reviewed in Parker
1998); and food foraging (e.g. Shaw et al. 1995).

In this paper, a model for the evolution of scramble
behaviour is reviewed and developed, together with a
summary of its behavioural consequences and an outline
of two ways in which the underlying behaviour may a¡ect
populations.

2. A SIMPLE MODEL FOR SCRAMBLE BEHAVIOUR

The original version of the scramble model developed
here is due originally to Parker (1985; see also Parker &
Knowlton 1980), and a more recent treatment was given
in Shaw et al. (1995). A rather similar model that
examines the e¡ect of kin selection on scramble behaviour
was analysed by Godfray & Parker (1992). The explicit
assumption is that individuals compete by scramble
competition to obtain ¢tness-related resources from a
patch within a habitat. An individual can increase its
share of the resources by increasing its foraging activity
or `scramble level’.

The population is structured into local patches
containing (say) food resources. Each patch contains a
number of competing foragers, and each competitor
adopts a scramble strategy that is related to the number
of competitors in the patch and the quality of that patch.
An ESS scramble level is sought in relation to the two
variables: number of foragers and the patch quality. For
present purposes it is assumed that the resources in a
patch are shared equally among the foragers, i.e. compe-
titive abilities are equal. (The model could be extended to
include unequal competitive abilities, e.g. by following
the approach of Sutherland & Parker 1985; Parker &
Sutherland 1986.) Let

n ˆ the number of competing foragers in a patch;

R(n) ˆ the rate of input of resources to a patch (patch
quality), which may relate to the number of fora-
gers;

S ˆ a competitor’s strategy for its scramble level,
where S* is the ESS scramble level;

E(S) ˆ a competitor’s rate of energy expenditure through
scrambling at level S (E is assumed to increase as
S increases);

G(S) ˆ the rate of net gain in energy through scrambling
at level S (equal to uptake rate minus expenditure
rate).

A competitor can increase its share of the gains by
increasing its scramble level, S. Explicitly, it is assumed
that it gains a proportion of R that matches its contri-
bution as a proportion of the total scramble, i.e. its share
of the resource is equal to its own scramble level divided
by the total of the scramble levels of all the competitors in
the same patch. Though a variety of relations are possible,
such an assumption would be approximated under a wide
range of biological conditions, the most obvious occurring
where scramble level is foraging speed and foragers
search randomly in the patch for prey items. Thus if an
individual scrambles to level S in a patch where all other
competitors scramble at the ESS level S*, its net gains will
be

G(S) ˆ c1
R(n)S

S ‡ (n ¡ 1)S*
¡ E(S), (1a)

where constant c1 converts the food items gained per unit
time into the same energy units as are spent through
scrambling at level S. Obviously, if the model is to be used
for some other form of scramble (e.g. mate searching),
E(S) would be in some other units, and c1 would scale the
resources gained appropriately. If all competitors play the
ESS, S*,

G¤ ˆ
c1R(n)

n
¡ E(S*). (1b)

It is unlikely that net energy gain converts linearly into
¢tness. Suppose that the ¢tness gain due to a net energy
uptake of G(S) units is W(G(S)), where W is some mono-
tonic increasing function of G. To ¢nd the ESS, we require
that

dW(G(S))
dS

ˆ 0, at S ˆ S*, (2)

subject to the second derivative d2W/dS2 5 0, at S ˆ S*,
for a maximum (see Maynard Smith 1982).

Substituting (1) into (2) and di¡erentiating gives the
result that

dW
dG

c1

R(n)
n

n ¡ 1
nS*

¡ dE(S)
dS

ˆ 0,

and thus we can see that the explicit way that energy
converts into ¢tness, W(G), is unimportantöall that is
required is that W is some increasing function of G so that
the derivative dW/dG is positive in order to produce the
ESS solution
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S¤ ˆ c1
R(n)

n
n ¡ 1

n
dE(S)

dS

¡1

, (3)

(see also Shaw et al. 1995). The reason for bracketing the
terms in (3) will become apparent later.

We cannot proceed further unless the function E(S) is
de¢ned. The most plausible relationship biologically is that
energy expenditure increases with increasing gradient as
an individual’s scramble level increases. Such increasing
costs are well established for the physiology of movement:
for example, in ¢shes the energetic costs of movement
increase in proportion to the cube of the speed (e.g.Wardle
& Videler 1980). A simple but £exible explicit form for
E(S), and one often used inphysiological studies, is

E(S) ˆ c2S
a, (4)

where c2 is a constant of proportionality. At a given c2,
increasing the exponent constant a above 1.0 causes an
increasingly bowed relationship between scramble level,
S, and energy costs, E (see ¢gure 1), making scramble
levels below 1.0 cheaper and levels above 1.0 more
expensive. An exponent a 51.0 implies that costs rise
progressively less steeply with scramble level, something
generally not found and biologically implausible. Hence a
minimum limit for a can be regarded as 1.0.

Substituting equation (3) into equation (4) gives the
ESS scramble level

S¤ ˆ
c1

ac2

R(n)
n

n ¡ 1
n

1=a

. (5)

Before analysing the behavioural and population
implications of competition, the e¡ect of the exponent
a on the ESS scramble level, S*, requires clari¢cation.
If equation (5) is simpli¢ed as S* ˆ (V/a)1/a, where
V ˆ (c1/c2)(R/n)[(n71)/n], we can see how S* varies with a
when all the other terms are held constant. Figure 1b
shows the relationship between S*and a at di¡erent values
of V. Though the ESS scramble level S* converges to 1.0 as
a ! 1, the approach to this asymptote can be from
above (high V ) or from below (low V ), and at inter-
mediate V, S* drops to a minimum and then converges to
the asymptote from below.

However, two points must be noted. First, at a given a,
the ESS scramble level is always increased by increasing
V: it is in a sense the biology of V that is the subject of the
present paper. Second, although the relationship between
the ESS scramble level, S*, and exponent a is rather
complex, the relationship between the energetic costs of
S* and a are simple: energetic costs of S* are inversely
proportional to a (see ½ 3). Thus increasing costs of
scramble can be modelled by decreasing a from some
hypothetical maximum towards in¢nity (generating zero
costs) to its plausible minimum of 1.0 (generating highest
scramble costs). In real systems, a will be determined by
obtaining the best ¢t for parameters a and c2 from physio-
logical or other data.

3. BEHAVIOURAL CONSEQUENCES OF THE MODEL

Note that the right-hand side of the ESS equation (5)
contains three parts within the square brackets:

(i) a constant term, c1/ac2 ;
(ii) a `resource share’ term, R(n)/n, which is the number

of resource items input per competitor;
(iii) a term (n71)/n, which is dependent only on the

number of competitors.

Two plausible ecological applications of the second
term will be considered in detail. The simplest and most
obvious interpretation of the model is that input of
resources to a patch is entirely independent of the number
of competitors exploiting it, so that R(n) is constant ˆ R.
The second term becomes R(n)/n ˆ R/n. For this case, n
becomes a component of both the second and third
terms, generating the term (n71)/n2, which decreases
with n (approximating to 1/n at high n).

However, in some instances the resource input is likely
to correlate positively with the number of foragers in a
patch. For instance, if foragers distribute themselves in an
ideal-free fashion within a habitat, the number of compe-
titors in a patch will tend to match the input rate of
resource (Parker 1978), so that R(n)ºRn. Then the term
R(n)/n will tend to be held constant ºRöexcept that we
must, of course, take account of the scramble costs them-
selves in calculating the ideal-free distribution (analysed
in ½ 4(a)). Since it forms an interesting upper bound under
ideal-free considerations, the case where R(n)/n is held
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Figure 1. (a) Energy expenditure, E, in relation to scramble
level, S, from equation (4), with a ˆ 1, 2 and 5 (c2 ˆ 1.0).
(b) ESS scramble level, S*, in relation to the exponent, a,
from equation (5), with V ˆ 0.1, 1 and 10 (see ½ 2).
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constant ˆ R is also examined. Then, the only term
relating behaviour to competition level is the third term,
(n71)/n, which increases with n up to an asymptote of 1.0
for large n. In addition to ideal-free foraging, there are
other biological circumstances where R/n may remain
roughly constant. One example might be nestling feeding
when parent(s) supply resources in proportion to the
number of o¡spring in the brood. If one egret chick dies,
the parents reduce their total input to keep the input per
chick roughly the same (Mock & Lamey 1991). Similar
e¡ects are found in siblicidal brown pelicans (Ploger
1997). Another example may be sexual advertisement
scrambles of displaying males (Parker 1982), in which the
total number of females attracted to a lek increases
approximately in proportion to the number of lekking
males (e.g. Sutherland 1996).

To di¡erentiate between the two cases, call

(i) `resources constant’ (or R constant) the case where
R(n) ˆ R; i.e. resources are independent of the
number of competitors;

(ii) p̀er-capita resources constant’ (or R/n constant) the
case where R(n) ˆ Rn; i.e. resources increase in direct
proportion to the number of competitors.

(a) Scramble level
Figure 2 shows the ESS scramble level for the two

cases, calculated from equation (5) using two values of a
(1 and 5). In ¢gure 2a, R ˆ 10, and in ¢gure 2b, R ˆ 5.
There will be one value of n at which the ESS scramble
level must be equal under both interpretations: this is
where the resource per capita is equal (n ˆ 10 in ¢gure 2a,
n ˆ 5 in ¢gure 2b). The following conclusions emerge.

(i) If resources are constant (continuous curves), the
scramble level declines gradually towards an asymp-
totic minimum of zero (for vast n) as the number of
competitors increases above n ˆ 2. At n ˆ 1 (no
competition), the scramble level is zero; at n ˆ 2, the
scramble level is maximum.

(ii) If per-capita resources are constant (broken curves)
there is a monotonic increase in scramble level from
zero as n increases from zero towards an asymptotic
maximum set by the constants R/n, a, c1/c2.

(iii) If the costs of scramble level are sharply accelerating
(a ˆ 5, see ¢gure 1), the two cases give rather similar
ESS scramble levels, and there is very weak depen-
dence on n. This occurs because the gradient of E(S)
changes very rapidly as S changes, con¢ning the
ESS to a relatively narrow range of S (see equation
(4)) across a wide range of n. If the costs of scramble
level simply increase linearly (a ˆ 1, see ¢gure 1), the
gradient of E(S) is constant, the two cases can give
very di¡erent scramble levels and there is strong
dependence on n across a wider range of n. The
dependence is positive for the resources constant
case, and negative for per-capita resources constant.

(iv) Increasing the available resource (R) increases
scramble level in both cases (compare ¢gure 2a,b at
given values of a and n).

Thus there are important ecological in£uences on the
expected behaviour: above n ˆ 2, the ecological assump-
tion about the resource^competitor relationship changes
the sign of the predicted relationship between competitor
density and scramble level.

(b) Energy expended per unit of energy gained
A measure with both behavioural and ecological

implications will be the amount of energy loss by each
individual in the scramble. Substituting equation (5) into
(4), note that the exponents cancel, giving the ESS
scramble energy expended as a function of both R and n:

E(S¤(R, n)) ˆ
c1

a
R(n)

n
n ¡ 1

n
. (6a)

Substituting into equation (1b), we see that the net
energy gain at the ESS is

G(S¤) ˆ
c1R(n)

n
(a ¡ 1)n ‡ 1

an
. (6b)

In ¢gure 2, at a given set of constant values, the two
cases (R constant, R/n constant) only experience one
point at which the per-capita uptake of resources is equal
(shown by the black dots in ¢gure 2a,b). The energy
expended per unit of resource gained for the two cases
can be calculated to generate a more direct comparison of
scramble expenditure that relates simply to competitor
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(b) R or R/n ˆ 5. The black dots at the intersection of the
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density. At the ESS, each competitor gets a rate of energy
uptake of c1R(n)/n for a rate of energy expenditure of E*.
The ratio (energy expended : energy unit gained) at the
ESS is therefore independent of the ecological assump-
tion, and is

E(S*(R, n))
c1R(n)/n

ˆ
1
a

n ¡ 1
n

. (7)

Thus at the ESS, the scramble level is geared to keep
the ratio of energy loss to energy gain directly propor-
tional to (n71)/n. As n increases, scramble level maintains
a constant cost/bene¢t balance of energy with an asymp-
totic ratio of a71 (see ¢gure 3), following equation (7). The
higher the a value, the more favourable the cost/bene¢t
ratio at the ESS (¢gure 3). If a ˆ 1, the asymptotic ratio is
1; scramble causes all the energy gains to be o¡set by
energetic costs if the number of competitors is high.

(c) Scramble level per unit of energy gained
The scramble level per unit of energy gained is

S*(R, n)
c1R/n

ˆ

c1
ac2

R(n)
n

n ¡ 1
n

1=a

c1R(n)/n
, (8)

which will again be di¡erent in the two conditions (R
constant, R/n constant), except if a ˆ 1 (when the right-
hand side denominator then cancels with the middle term
of the numerator), and/or at the value of n where the
same per-capita energy uptake occurs, as shown
previously in ¢gure 2. S * is plotted against n in ¢gure 4
for a ˆ 1 and 5. With a ˆ 5, the R constant case rises
almost linearly across the range n ˆ 1^10, but the R/n
constant case very quickly asymptotes and becomes
virtually independent of competitor density for n 5 2.

(d) An experimental example
An experimental study has provided some evidence for

the above predictions. Shaw et al. (1995) investigated
feeding scrambles directly in the cichlid ¢sh Aequidens
portalegrensis by taking swimming speed (number of
squares crossed per 120 s in a grid on the side of the tank)
as the measure of scramble level. From n ˆ 1^10 ¢shes in

an aquarium were fed from above with standard-sized
£aked food and movement rates during each feeding trial
were recorded with a video camera. Two rates of feeding
were used, one item every 5 s, whatever the number of
¢shes (resources constant), and one item every 50 s for
each ¢sh (per-capita resources constant), with n ˆ 10
¢shes having the same per-capita gain in both experi-
ments. The relationship between energy expenditure E
and swimming speed S was taken from a biophysical
expectation (see Wardle & Videler 1980), which predicts
E to increase as the cube of swimming speed (a ˆ 3),
multiplied by constants relating to water density, surface
area of the ¢sh and the coe¤cient of friction between the
¢sh and the water. These constants would enter into equa-
tion (5) within the general constant c1/3c2. Shaw et al.
(1996) obtained a best estimate of this general constant
from all their data, then used it to predict the relationship
between foraging speed and number of competitors in
each feeding regime. The two regimes showed signi¢-
cantly di¡erent responses to increasing ¢sh density. As
expected, the R constant case showed a decrease in fora-
ging speed with competitor density, but the R/n case
showed little e¡ect of density (a weak positive relationship
was expected). The observed average movement rate per
¢sh against ¢sh density showed a good ¢t to the predicted
relationship in each feeding regime (qualitatively resem-
bling the a ˆ 5 curves in ¢gure 4). Overall, the ¢t
between observation and prediction was encouraging,
though the behaviour of solitary or paired foragers (n ˆ 1,
n ˆ 2) was not predicted by the model in the R/n constant
case, being much higher than expected.

4. POPULATION CONSEQUENCES OF THE MODEL

Two population consequences of the scramble model
are considered. The ¢rst concerns the way in which
scramble may a¡ect ESS distributions of competitors
within a habitat, and the other concerns its e¡ects on net
gains, ¢tness and ESS population size.
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(a) Ideal-free distributions under scramble
competition

Under the ideal-free distribution theory (Fretwell 1972),
equal competitors are distributed in habitat patches such
that each individual cannot do better by moving to an
alternative patch. At the ideal-free ESS, individuals all
achieve equal ¢tness whatever patch they are in (e.g.
Parker 1970). For our purposes, equal ¢tness is achieved
by equal gains per individual across all patch types i, j, k,
etc. For ¢tnesses to be equal, net per-capita gains must be
equal, so that

Gi(S
*
i ) ˆ Gj(S

*
j ) ˆ Gk(S

*
k ) ˆ . . .

constant G* for all patches,

where G* is the expected gain, all scramble levels opti-
mized at Si, Sj, Sk, etc., from the entire habitat. Thus
where the numbers in each patch i, j, are ni, nj, . . . etc.,
we can write

Gi(S
*
i ) ˆ c1Ri(ni)/ni ¡ E(S*

i ) ˆ G* for all i, j, . . . . (9a)

The di¤culty immediately arises (as in most analyses
of ideal-free foraging) that biology requires solutions to
have integer values for n, though this will seldom apply
from the mathematics. I will follow tradition and ignore
this problem.

In the present analysis, assume that resource input to
patches is constant, so that R is independent of n (i.e.
R(n) ˆ R). Then if energy costs follow equation (4),

Gi(S
*
i ) ˆ c1Ri(ni)/ni ¡ c2S

*a
i ˆ G*, (9b)

where the expected gain at optimization is

G* ˆ p i
c1Ri

n¤
i

¡ c2S
* a
i , (9c)

in which p i is the frequency of patch types i, j, etc. across
the entire habitat.

Assume that the competitors distribute themselves in
an ideal-free fashion by some rule that takes into consid-
eration that in each patch i, the ni competitors will then
play their ESS scramble level S*(ni). We can then sub-
stitute S* from equation (5), with R(n) ˆ R, into equation
(9b), giving the result that

c1Ri

n¤
i

(a ¡ 1)n¤
i ‡ 1

an¤
i

ˆ G*,

for all patches i, j, k, . . . etc: (10a)

(cf. equation (6b)). This gives a quadratic solution for the
number of competitors in a given patch i

n¤
i ˆ

(a ¡ 1) ‡ (a ¡ 1)2 ‡ 4¬i

2¬i
, where ¬i ˆ

aG*

c1Ri
.

(10b)

If we look at the ESS ratio of numbers of competitors
in patch i to the number in patch j, we see that this ratio
is

n¤
i

n¤
j

ˆ
Ri

Rj

(a ¡ 1) ‡ (a ¡ 1)2 ‡ 4¬i

(a ¡ 1) ‡ (a ¡ 1)2 ‡ 4¬j

,

where ¬i ˆ aG*

c1Ri
, ¬j ˆ aG*

c1Rj
. (10c)

I ¢rst compare this result with the typical result for
continuous input studies but without the e¡ect of
scramble. For such studies, the net energy gain per
competitor in patch i is simply Gi(S*

i ) ˆ c1Ri/n
¤
i because

there are no scramble costs. Applying a parallel analysis,
we get the familiar input matching rule (Parker 1978):

n¤
i ˆ

c1Ri

G*
, (11a)

i.e. the number of competitors in a patch i should simply
match the input rate to the patch scaled by a constant
term. Calling the ratio of patch inputs or qualities
»i j ˆ Ri/Rj, the ratio of competitors in patch i to competi-
tors in j becomes

n¤
i

n¤
j

ˆ
Ri

Rj

ˆ »ij. (11b)

This can be compared with equation (10c), in which the
competitor ratio is also related to »i j. With input matching
equation (11b), increasing the total population of competi-
tors in a habitat will not alter the proportions exploiting
the di¡erent patches (see Tregenza 1995; Tregenza et al.
1996). However, the right-hand side of equation (10c)
contains the term G* within the constants ¬i , ¬j, which is
a function of ni, nj, . . . etc. (see equation (9c)). Therefore
under scramble, changing the total competitor density in
the habitat may change the ratios of competitors in the
patches.

Two extreme limits for a can readily be examined in
equation (10b). The extreme, where a ˆ 1 (resulting in
highest scramble level), gives

n¤
i ˆ

c1Ri

G*
, (12a)

i.e. the number of competitors in a patch should equal the
square root of the resource-input rate times a constant.
The competitor ratio from equation (10c) is simply

n¤
i

n¤
j

ˆ
Ri

Rj
ˆ »ij

p
, (12b)

i.e. it equals the square root of the input ratio, rather
than the input ratio direct, as in the non-scramble version
of ideal-free under continuous input. The other extreme
has a approaching in¢nity (resulting in zero scramble
expenditure at the ESS in all patches, see equation (6)).
Here we obtain results equal to equations (11a) and (11b)
for ideal-free without scramble.

Figure 5 shows how the competitor ratio in equation
(9b) changes with a at di¡erent input ratios of resources
to the patches, »i j ˆ Ri/Rj, between these two extremes.
The broken line is for input matching (limit where
a ! 1). As a decreases towards 1, the deviation from
input matching becomes marked: there is pronounced
`undermatching’, i.e. fewer competitors occur in the

1642 G. A. Parker Scramble in behaviour and ecology

Phil.Trans. R. Soc. Lond. B (2000)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


better patch than suggested by the patch ratios. Under-
matching is a common feature of continuous input studies
(for a review, see Tregenza 1995).

In summary, scramble competition could result in a
marked deviation from ideal-free distribution, with fewer
competitors in the best patches than would be expected
by input matching. The e¡ect causes a more even spread
of competitors among patches than would otherwise be
expected from the variation in resource input rates
among patches.

(b) Fitness reduction and ESS population size
Parker (1985) noted that there could be a dramatic

¢tness reduction arising from a simple version of this
scramble model. The net energy gain under the scramble
ESS in a patch i containing ni competitors is given in
equation (10a). Note that the ¢rst term in brackets in this
equation is the per-capita gross gain and the second
bracketed term is a reduction factor, which represents a
proportionate loss of this gross gain due to the scramble
expenditure. Thus when there is zero scramble level
(equivalent to very large a), this second term becomes 1.0,
and the gross gain per competitor is retained by all indi-
viduals. When scramble expenditure is maximal and
a ˆ 1, the second term becomes 1/ni, and the gross per-
capita gain is reduced by a factor 1/ni because of the
scramble expenditure. This could obviously exert major
e¡ects on populations.

If scramble expenditure alone controls populations, we
can make some estimate of the maximum reduction in
population size that it could cause. For simplicity,
imagine that all patches in a habitat are of equal size and
quality. We seek an ESS number, n*, of foragers per patch,
maintained by the e¡ect of scramble, which when multi-
plied by the number of patches in the entire habitat gives
a measure of the ESS population size.

To do this, we need to know the relationship between
¢tness and net gains, i.e. W(G*). For simplicity, assume
that net gain converts linearly into ¢tness, so that
W(G*) ˆ bG*, where b is a positive constant. (In reality,
¢tness is unlikely to be linearly related to per-capita gain

and more likely to show diminishing returns with G.)
Then at stable state, the number of foragers returning to
each patch at the next generation occurs where number of
competing foragers n* ˆ bG*n*, i.e. where W(G*) ˆ 1.
De¢ning K ˆ nmax as the maximum carrying capacity per
patch, achieved when there is no scramble expenditure,
we see that if there is no scramble expenditure,
Gmax ˆ c1R/nmax, so that K ˆ bGmaxnmax ˆ bc1R; i.e. K is
proportional to the total resource input to the patch.
Substituting G* from equation (12) gives

n¤ ˆ K
(a ¡ 1)n¤ ‡ 1

an¤ ; (13a)

so that

n¤ ˆ
K(a ¡ 1) ‡ K2(a ¡ 1)2 ‡ 4aK

2a
. (13b)

It is easy to see that equation (13a) gives the expected
result that n* ˆ K if a is very large so that there is no
scramble expenditure, and (13b) gives n* ˆ K

p
when

there is maximum scramble expenditure (a ˆ 1). Thus in
principle at least, scramble competition could reduce the
population to the square root of potential maximum
carrying capacity. Note, however, that this is a maximum
and can occur only under maximum scramble and when
the number of competitors in a patch is equal to the è¡ec-
tive number of competitors’ (see ½ 5).

(c) E¡ect of distribution on net gains
Finally, it is of interest to compare the net gains under

various types of distribution. To make the analysis more
tractable, suppose that we categorize patches within the
habitat as g̀ood’ (A) or `bad’ (B), having respectively the
input rates RA, RB , and let A and B types occur with
equal probability (0.5). Thus the average total input per
patch is R ˆ (RA ‡ RB)/2.

Suppose ¢rst that the number of competitors in a patch
is constrained at n in all patchesöindividuals are not free
to move to better patches. However, assume that they can
monitor the patch input rate and play their ESS scramble
level S* in relation to R and n. The expected net gains to
an individual, assuming that competitor number in
patches is equal, is

G* ˆ ‰(c1RA/n ¡ c2S * a
A ) ‡ (c1RB/n ¡ c2S * a

B )Š/2,

which gives

G* ˆ
c1R
n

n(a ¡ 1) ‡ 1
an

; (14)

cf. equation (10a).
Suppose now that we remove this constraint so that

individuals adopt the ideal-free distribution. From equa-
tion (10a), we set the net gains equal in patch types A and
B and obtain an expression in terms of ideal-free compe-
titor numbers, n¤

A , n¤
B ,

RA

RB

ˆ »AB ˆ
n¤2

A

n¤2
B

n¤
B(a ¡ 1) ‡ 1

n¤
A(a ¡ 1) ‡ 1

. (15)

Where the mean number of competitors per patch is
n ˆ (n¤

A ‡ n¤
B)/2, then equation (15) can be used to solve

n¤
A , n¤

B, and hence G* (from equation (10a)) at any value
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of n and ». For present purposes, we will con¢ne interest
to the limits a ˆ 1 (maximum scramble) and a ! 1 (no
scramble, input matching applies). This gives

a ˆ 1, n¤
A ˆ 2n »AB

p
/(1 ‡ »AB

p
); (16a)

a ! 1, n¤
A ! 2n»AB/(1 ‡ »AB). (16b)

Net gains, G*, can now be calculated from equation (16)
via equation (10a), and from equation (15). Since
RA ˆ »ABRB ˆ 2R»/1 ‡ »), we obtain

a ˆ 1, G¤ ˆ
c1R
n

(1 ‡ »AB
p

)2

2n(1 ‡ »AB
p

)
; (17a)

a ! 1, G¤ ˆ
c1R
n

; (17b)

see ¢gure 6. As expected, if a ! 1 there is no scramble
and so the net energy gain is proportional to the mean
patch quality divided by the mean competitor number
(equation (17b)), exactly as it is if competitors movement
is constrained (equation (14)). This at ¢rst appears odd;
higher net gains might be expected with ideal-free since
individuals are free to exploit the habitat in a way that
competitively maximizes individual ¢tness. However,
without any scramble costs, the expected gain per capita
in both cases is simply the total resources divided by the
total competitors. Only the variance in net gain between
individuals changes between the modelsöunder ideal-
free, all individuals get equal gains, under constraint,
some individuals gain more than others, depending on
»AB. Consider the extreme case where »AB ! 1 : if indivi-
duals cannot move freely, half the individuals get double
the gain that all would get under ideal-free and the other
half get nothing. Thus the fact that expected net gains are
equal does not mean that it will not pay individuals to
moveöif free to move, individuals in a bad patch will
always gain in the constrained model by moving to a

good patch. Although expected per-capita gains are equal
in both models, ¢tnesses will only be equal if ¢tness
increases linearly with G. Fitness will be higher under
ideal-free if W shows diminishing returns with G.

With maximum scramble, the net gain is proportional
to R/n2 when movement is constrained (equation (14)); i.e.
it is 1/n that of the former case because of the scramble
costs (equation (17b)), and unrelated to »AB. However,
under ideal-free assumptions, G* becomes related to the
disparity between patch types (equation (17a)), declining
weakly with »AB (¢gure 6). Rather counter-intuitively,
under ideal-free, as patch variance increases and »AB
increases above 1.0, maximum scramble conditions cause
net per-capita gains to be lower than when free movement
is constrained (¢gure 6). The di¡erence between the two is
small, reducing as n increases. This occurs because, at
maximum scramble, the ideal-free competitor ratio
increases only as the square root of the patch input ratio
(see equation (12b) and ¢gure 5), so that the competitor
numbers di¡er less from n than might at ¢rst be imagined,
damping down the di¡erence in net gains between the
models. Thus the main in£uence on G* is the extent of
scramble costs rather than any di¡erence in distribution
due to free or constrained movement between patches.

5. DISCUSSION

This paper shows that the average per-capita resources,
R(n)/n, and the way in which scramble costs rise with the
level of scramble (de¢ned by a), exert major e¡ects on
scramble behaviour. An experimental study designed to
test this (Shaw et al. 1996) was in general successful.
Scramble will a¡ect the predictions of ideal-free distri-
bution theory, and some degree of undermatching is
expected. While undermatching is implicit or explicit in
several of the cases reviewed by Tregenza (1995), two
cases of overmatching are noted. These cannot be
explained readily by the present analysis.

It is interesting that Nicholson (1954) saw scramble
competition as having potentially more drastic e¡ects on
populations than contest competition. To assess the
maximal e¡ects of scramble on populations implied by
the present analysis, it is important to distinguish
between the number of individuals exploiting a patch,
which we can call N, and the è¡ective number of
competitors’, which we call n. We have until now
assumed that N ˆ n. But in a large assemblage of N
competitors, it seems likely (from the point of view of a
given focal individual) that only a subset of n71 others
actually compete for a subset of the total R items that
are being input to the entire patch. If zn ˆ N, then we
expect that the subset of items for which n competitors
compete is R/z. Calling, as before, the maximum poten-
tial carrying capacity for the entire patch K ˆ bc1R, then
applying an analysis parallel to that in equation (4c), we
¢nd that that under conditions for maximum scramble
(a ˆ 1), the ESS population size now becomes N *

ˆ z K/z
p

. For z ˆ 1, the prior result that N* ˆ K
p

again
applies since n* ˆ N *. As z increases above 1, N *

becomes closer to K than the previous estimate of K
p

.
A theoretical maximal limit of z ˆ K (i.e. e¡ective
competitor number ˆ 1) implies that this e¡ect can raise
N * to K. A second reason why populations are unlikely
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to be reduced to K
p

, even if scramble competition were
to be the sole determinant of stable population size, is
that the energy costs of increased scramble may be very
bowed (a441; see ¢gure 1) resulting in rather little
expenditure, so that N* approaches K. Shaw et al. (1995)
used published expectations from biophysics to estimate a
as three in their study on ¢shes, on the basis that swim-
ming speed would best ¢t the notion of pay-o¡s through
S as de¢ned in equation (1).

For the past quarter of a century, John Maynard Smith has had
an in£uence on my research far exceeding that of any other
person. This seems an appropriate place to express my warmest
thanks to him, not only for this in£uence, but also for his friend-
ship, stimulation and inspiration. I also thank S. J. Hutchinson
for useful suggestions for improvement of this paper.
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